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ABSTRACT

"Pseudo stite measurements" are constructed to make the

measurement (geometry) model linear in the state. In the past, linear

measurements have tiften proved to give better state estimates than non-

linear measurements. They are nonlinear functions of the actual measure-

ment model bias parameters and are constructed to be linear functions of

the state variables or to vanish in the absence of model or measurement

error. Some examples of constructing pseudo state measurements are

given in the paper. Recursive filter equations are derived using the pseudo

state measurements and including colored (Markov) measurement noise

and unestimated state and measurement model parameters. The filter esti-

mates minimize the usual weighted least squares cost function with corre-

lated state and pseudo state measurements. The filter is linear by con-

struction. Higher order partial derivatives, if retained, would appear only

in the computation of error variance and covariance matrices.
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SECTION I

INTRODUCTION

Nonlinear problem geometries often assume that the measurements

are related to the state using the nonlinear relation Zn h n(Xn) + N n . With

n n nthis nonlinear form of the measurement model employed, the current optimal

estimate can only approximately be represented as a linear combination of

the measurements. The usual procedure is either to iterate the solution
until acceptable accuracy is obtained or simply to ignore the partial deriva-

tives of h (X ) that are higher than the first (Ref. i). In this latter case,
n n

a direct computation of the errors caused by the omission of the second
derivatives in some applications exceeds the measurement noise by an
order of magnitude. Hence a serious convergence problem may arise with

this formulation. Techniques for using the measurement m(.el second

derivatives are given in Ref. 2.

A new approach to nonlinear filtering with correlated measurement

noise is presented in this paper. This approach, using pseudo state mea-

surements, differs from the usual approach of the "extended Kalman" filter.

The latter approach requires the computation of nonlinear residuals and

uses nonlinear propagation of the state. The approach defined in this paper

uses a nonlinear transformation of the actual measurements and the a priori

state variables to obtain pseudo state measurements. The analysis in this

paper is general in that all such functions are permitted, including functions

that vanish in the noise-free case. The principal advantage results when the

pseudo state measurements are constructed to be linear functions of the

state variables.

All nonlinearity in the measurement model is restricted to the

Computation of the covariance and variance error matrices. These non-

linearities are unavoidable and do not appear to be a source of concern.
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The usual weighted least squares cost function of correlated

residuals is adopted as the cost function to be minimized. The use of pseudo

state measurements has been tested to a limited extent by the author, using

both simulated and actual data with good results.

The derivation using pseudo state measurements in this paper

includes the derivation in Ref. 3 as a special case. The equations (see

Appendix A) degenerate to the usual Kalman filter by setting S, o, 8, V,

D, G, L, Y, and B to zero and 1to I.

!J "1
II
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SECTION II

EXAMPLES OF PSEUDO STATE MEASUREMENTS

Pseudo state measurements n are constructed as nonlinear functionsj

of the actual measurements Z and the a priori state estimate X as n
n ~nn

n(Z, Xn ). It is convenient to construct pseudo state measurements to be

linear functions of the state variables I (X n). The pseudo state residuals I I
are then Ar n -(Z n, X - In(X n), whereI (Xn) =9 nXn are linear func-

tions of the state variables by construction.

Several examples will be given to illustrate the construction of

pseudo state measurements. Consider that th. state variables include X,

X2, X3, X ' and .... "" '.It is possible th, t three simultaneous

position masurements can be made such that X 1, X2 , and X 3 can be cal-

culated from the three measurements. Examples of this include trilatera-

tion, where three simultaneous range measurements are made from three

different stations. (In this context a station may denote either a ground sta-

tion, a ship; or a satellite whose coordinates are known approximately.)

Other examples can be constructed wherein exactly three position measure-

ments involving range, angle, and/or direction cosines, etc. , are mea-

sured from which X 1 , X2 , and X 3 can be calculated in the ideal (error-free)

case (Refs. 4 and 5).

A simple example occurs when range, azimuth, and elevation

angles R, A, E are measured from a station. Then

R cos A cos E (.f 1 = XI)

2 -R sin A cos E (I 2 
= X2 )

"3 R sin E (13 = X3)

are pseudo state measurements since these are nonlinear function5 of the

actual measurements. This is a special case since a priori state variables

-3- 4



were not required in the construction. In general, it is not possible to findIa nonlinear transformation of the measurements that will be linear functions
of the state variables. Consider the case where two angle measurements

are made from a single station. Then the pseudo state measurements (PSMs)

become

" I cos A cos E (II Xj)

2 = Rsin A cos E (1 2 = X 2)

= R sin E (I3 = 3

-2 -2 -21/2
where R (X + X + X3 ) is constructed using the a priori state vector.

If E, A are measured at several stations, then the same procedure may be

followed for each station. This procedure extends the use of the a priori

data to the measurement model. It may be preferable in this example to

omit 2 or 3 since there are only two measurements. The u-se of only two

PSMs may avoid some matrix inversion problems in the gain computation.

An alternate construction of the PSM for angle only tracking data is as

follows:

= = -XI sin A + X 2 cos A (1 =0)

= Xi sin E cos A

S+ X 2 sin E sin A- X 3 cos E (12 =0)

This technique has the further advantage that at/8x. are independent of X..

In the case where R is measured at one or more stations, it is only

necessary to construct E, A from the a priori data in order to obtain 1 2'

and 3 (or any one of the three). A similar procedure can be constructed

for velocity, acceleration, and attitude measurements obtained in the sensor

coordinate system. These measurements may be linearly related to the

Cstate vector.

-4-
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r pseu For example, when the measurements are R, E, and A, then the
pseudo state velocity measurements may be constructed as

- 4.w(i , E, A;R, E, A) (L:X.) (i i,2,3)

where R, E, and . are calculated from X, Y, and .. In a similar fashion, i
vehicle measurements of acceleration and attitude rate may be linearly 1

i "t

i Ii

•{ I
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SECTION III

FILTER COMPARISON

The pseudo state measurement filter (PSM) can be compared with

the extended Kalman filter (EKF) in the following special case involving

white measurement noise and n, unestimated parameters. The result is

given below:

EKF

K MnW (R + WnMn/ -n n n n n n n

P = (I- K n. n ) M n

IC ~X + K [ I (X n)JXn =n + n [n - n

PSM

T 12-i +(yTK zMn(97 -r.7 ) T r RnnT +( - n')Mn(9 n -Y ) j I
i Pn- [I - Kn(

n1 n n( nn-] Mn

R n R n + K n( n " "'Vn Xn

T
whe re M n n Pn-I 4n + Qn and Xn are evaluated using the nonlinear formu-

lation. The balance of the symbols are defined in Appendix A. Note that no

errors are introduced in the PSM formulation as a result of neglecting

second-order partial derivatives of I n(Xn). In one of the examples of

PSMs, it follows that both .1' and,;V' are constants. The EKE formula-
n n

tjon suift-rs from the fiact that ' are not constants.
n

-7-
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APPENDIX A

SUMMARY

The filtering concept may be explained with reference to the block

diagram (Fig. A- 1), which shows seven computational blocks denoted as:

Block 1. State propagation

Block 2. Pseudo measurements

Block 3. Set up computations I
Block 4. Cost function

Block 5. Gain and covariance computation

Block 6. Step initialization e

Block 7. Filter performance evaluation.

The previous best estimate of the state vector is propagated in

Block I to the time t when the measurements are made. Pseudo state mea-

surements and pseudo state residuals are calculated in Block 2. The gain

matrix Kn is computed recursively in Block 5. The gain matrix scales the

pseudo state measurement residuals to obtain the improvement increment

to be added to X . The error covariance matrix of the estimate is alson
computed in Block 5.

The computation of the gain matrix requires that matrices M, R,

Z, and C be computed. This is performed in set up (Block 3).

Block 6, step initializatin, is included so that the required input

matrices to Block 5 (G, V, and L) may be computed recursively.

Blocks 4 and 7 are included so that the filter performance, includ-

ing dynamics and measurement modeling, may be evaluated. Note that I
inclusion of these blocks is not required for the recursive filter operation.

These may be included when the computational capability permits and when

there is some question as to the adequacy of the modeling process.

A-5'1
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Blpck 3 Equations

yn a~ -

+ zF) R T + qqr

rM =6pa T + q g T ,yFT k T ~

n n n-I n n

T _ _ _ _ _ _ _ I n +1

-~m Wx - y X)+[4-T (X T J(

t)n nn n n' n
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APPENDIX B

DERIVATION

The filter equations will be derived with reference to Fig. A-i.

The equations for each of the blocks wi>- ",e derived.

B. I Block I - State Propagation

The dyna-nics of the state vector propagation are given by the non-

linear vector function

x '(X P) + U (i-i)n n-I n

It is assumed that the best estimates X n-1 and F are available such that

_R 9(X V (t-2)•n n- V r

B. 2 Block 2 - Pseudo State Measurements

Let Z denote the actual measurements = Z- N . These mea-
n n n

surements can be correlated a. a first-order Markov process as

N n = pNni + q W (2-i)

The development in this report can be extended to the nth-order Markov

process. Pseudo state measurements are now constructed as monlinear

functions of the actual measurements and the a priori state estimate X n
The pseudo state measurements then become linear functions of the state

variables; i. e.

nX T) (2-2)

B-i
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denotes the pseudo state measurements. These are constructed to be exactly

linear functions of the state variables except for the errors A n that result

from the measurement noise N n, the state error estimate , and the mea-n n
* surement model errors T. Hence, in the equation

n t2 n(Xn) n (2-3) :

:n denotes a linear function of the state variables. In practice, an attempt

is made for I n to be identical with one or more of the state vector compo-

nents. Pseudo state measurement residuals are then obtained (Fig. A-i)

as ;n 5 n(n)

B. 3 Block 3 - Set Up

The computation of the cost function requires that Mn , Rn , Zn' and

C C be calculated. This is accomplished by using the inpats to Block 3 shown

in Fig. A- I.

The computation of Rn , using Eq. (2-i), is obtained as

R = N., NT>

<(pN + q Wn) T T W T T

n-1 (Nn-I )>

(3-!)

NT > pT + q KWr wT> qTP P<N n-t n-1

pR n-I P T + q qT
TT

where <WW nw> I.

The computation of M n requires the evaluation of X n' which results from

Eqs. (I-I) and (1-2) as

B

B -2 4,



x =X -X

9(X 1 , P) U V(X 1

[1 ~X + - .(3-Z)

= e +21 +UyjA.

n -,n
wh'!re the expansion terms higher than the first degree were ignored.

The computation of Z and Cn require, the evaluation of A , as
I~~r n nn

defined in Eq. (2-3). Using Eq. (2-2), it follows that

= (Z + , X, T) +( X T) (

nnr n no n no noT

The result of expanding the first term in a Taylor's series and retaining

only the linear terms~ is

A W N + g iY X+ (3-4)
n n n n n n

where the partial derivatives are defined as

n az n-7

n OX-

n; ) )

B-3



TT

4

In the computation of M n, Eq. (3-2) is used as

M _xx

T T -T T TS+2-+U)(e T d +P + Un)>n n-I n n-i 'n n
(3-5)

T 7T +2vT T
n Pn-I n Vn-I n-i

+gS!-T + j
n

In the computation of C n , Eqs. (3-2) and (3-4) are used as

cn ---<A X x-"

~-T>

n n n n n n n n

but from Eqs. (3-2) and (Z-i), it follows that

Wn N(TN> (4 +1 + 1 ) (N T T +n- WnT q T)>
(3-6)

NT > pT pT
n n-1 n- n Gn-

Y n =-<X n T > = n L n-i (3-7)

Hence

YeM lapM - W F - (3-8)
n n n n n n n

where it is assumed that

T -T T,10 p ;> <P T > < n>

13-4
at a- / -



7-17

The computation of T. is obtained by using Eqs. (3-4), (3-2), and (2-1) asn

n < n T

TT + TT + -T T
=<(W, Nn+X x n + e n T ) (N T n x Tn n + T 19) D

nnn nn n n n n n n
(3-9)

+T' W Mn'V,:
= g n n (n n n nn

+ .;V Y eT + 'n Y JTn + 9 B &T - I
n n n nn n n n

B. 4 Block 4 - The Cost Function -

The cost function is constructed to minimize the correlated weighted

east squares of the sum vector, consisting of the pseudo state measurement

-esiduals and the a priori state residuals, as

n In (Xn))

i. e. , the two vectors are joined to form a single vector consisting of the

ordered sum of all components. The cost function then becomes

%n ( 'n In (X n)) T A ( n - (Xn)) + -( Ie (X A)T J n(X n Xn)

+ (XTn  n )TDn(Xn - Xn (4-i)

where the quantities A, J, and D are defined as

An n Zn Cn

- (4-2)-
T  T  M

B-5
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and

' ., n n~I(Xn In n(Xn ) T A A

n " X n (J n = - n n>

Mn "(n -nXn) (Xn - X)> <Xn >

a e each calculated in Block 3. Note that if A ,..nd X X are Gaussian,n: n n
the cost function becomes the conditional mean and the estimate is considered

- P optimal ini the usually accepted sense. However, these residuals need not be

Gaussian for the purposes of this report. The cost function is then simply

* the weighted least squares cost function. Note also that this formulation of

the cost function is such that, given Gaussian variables, the distribution

function of the cost function is chi-square with n1 + nz degrees of freedom and

that these data could be transformed to orthogonal variables. If this were

done, each item in the sum of squares would be weighted inversely as its

variance.

Expressions for An, D n and J will be calculated. Multiplying

both sides of Eq. (4-2) together and equating to the identity matrix results

in the following equations

MA +CJ T I

-J + CD= 0
(4-3)

C A + MD =I

C TA + MJIT  0

where the n subscripts have been ornitted' for ease in typing. The result of

solving for A, D, and 5 is

A = - CM - I cT = 2 - + Z-1 CDCT 2-1 (4-4)

B-6



D M CT Ifi M +M CT ACM-~ (4-5)

and

J= IM C M -i C TV CM-1

~1c[~C~l cY'(4-) 4
There are two solution forms for each expression because of the redundancy

of Eqs. (4-3) (4 equations with only 3 unknowns). The user should choose

the combination that pDrovides the simplest computer program.

*B. 5 Block 5 -The Gain Computation

The optimal estimate is the one that minimizes the cost function

obtained in Eq. (4-1). This estimate results from taking the gradient of

Eq. (4- 1)

nT

aw n n n 'n(Xn + n (n nX

nn

(Dr -i J (X -X( A ( (5-21)

n n

T TX TE (I )+(XX) 53

n n n n n n Xn)

and then Eq. (5 -2) may be written as

B-7



Xn = n+Kn[n - In(Xn)] (5-4)

where

K [D +C A J' 9 -9T [9?TA (5-
n [n n n n n n nn n"

Note that the gain matrix Kn consists only of constants, i. e., Kn is inde-

pendent of the state and measurement residuals.

The gain computed in Eq. (5-5) gives an estimate X that minimizes

the weighted least squares cost function of Eq. (4-1.). It will now be shown

that the same gain K also minimizes each of the diagonal elements of then
error covariance matrix P . This assumes that the minimum variance esti-

mate is a linear function of the pseudo state measurement residuals; i. e.,

assume that

'X = x +'Wn[ n - 1(n)) (5-6)

:n n nn nn

Then the estimation error is obtained by adding and subtracting X from
n

both sides of Eq. (5-6) to obtain

e nX -, X X) - n(Z*, Xn T)

(5-7)

n n n n

Note that Eq. (5-7) agrees with Eq. (5-4) since the identity

,tn(X) - (Z X, T)- 0

has been added within the brackets. Hence, Eq. (5-7) may be written using

Eq. (3-4) as

en Xn n[ - 'W n  (5-8)
n n n n fn n '

B-8
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'The error covariance matrix of the estimate is P - <e h . It is easily

shown by direct differentiation that each of the diagonal terms in P is

minimized by choosingOr" to satisfy the Weiner Hopf equation as: n

, <n _ R > _ n n (T> (5-9)

An interesting derivation of the Wiener Hopf equation is given by Johnson

(Ref. 3). Equaton (5-9) may be expanded and the definitions of the covari-

ance functions used to obtain

+M = [z + C +C 2 +T T 5-0n n n n n n n n -nnn

It will now be shown that the di defined in Eq. (5- i) is exactly the same as

the K specified in Eq. (5-5); i. e., i

K --
n n

This is done by substituting K from Eq. (5-5) forX n in Eq. (5-i0). The Vn
result of this substitution is

V [D+5 T A jT .Se T j] [M T+ CT]

V : [STA - 5T] [z+ C'TT+ aCT +LM T] 'V")

It is easily shown, using Eqs. (4-3), (4-4), (4-5), and (4-6), that Eq. (5-11)

is an identity. The proof is simplified by noting that corresponding terms

Y involving similar groupings of Ye and ,YT must vanish identically. Hence it

has been shown that the weighted least squares estimate is identical with the

linear minimum variance estimate and that the simpler expression may be

used for the gain computation as

K =[ + M £1'].[Z + n + C +.TM (5-12)

n n n n1 nTn nn n

B-9
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In the computation of P nEq. (5-8) is used as

' =X +K Ar (5-13)
n n n n

where

Ar A , - !n X (5-14)

~n n n ni

Then

P E(X I- r(xn +1 n r)T>

n K nn----- R( n &n nn)
(5- 15)

T> K r > + X rT> KT + KArArT> KTn - n n K<A. rn X n <'n rn n nA>

where

<A Xn> = <(A' n - ,C Xn ) Xn>

< n xn n n n>

n in n

and

4r <A > < ((As - V!Ln X ) (A1 n - n) X )
kNn nn nn n(5-17)

+ + c+c .T+Y M XTn n n n n n n

Equation (5- 15) may be simplified by noting that the Wiener Hopf equation

(5-9) requires

<Xn ArT> -Kn<-rn ArT> (5-18)

nn-10



Hence, P simplifies to

M C+2 Ml(-)n n n n Mn

-[I - K 2 Mn -Kn C
rin n nL~~

Pn may also be computed using Eq. (5-15), which does not require that the

filter satisfy the Wiener Hopf equation. The result is

P~ =M K [C;+ T M [;[ T + M 9T K TPn : n " n [ n  n hn] [n 4  n T n

(5-20o)

+ K [Zn+ X CT + C 9F +.-' M 9?nT K E
n n nn n n n n n n

B._6 Block "6 - Step Initialization

The quantities Gn , V and L are computed in Slock 6. These

quantities are required for the set up computations in Block 3.

The computation of these three covariance matrices requires com-

putation of the estimation error. This is obtained in Eq. (5-12) as

en=Xn +Kn[A -n " (6-i)

The use of Eq. (3-3) permits Eq. (6-1) to be written as

I 1

en X +K ['& N + XR +6( T 9 x1
n n n n n n n n n (6-2)

4[I + Kn 'n - Knn n + Knn Nn + Kn n

=F X +K V N +K & T' (6-3)'n n n n n n n

B-i-
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)

where

F n I+Kn)nn ' (6-4)

nnS Then G n is obtained by using its de£1nition and Eq. (3-5) as

G~e TGn  <en Nn>

<IF T=FX N~+ K W' N + N>T 65
n Xn n K n lnNn>+ n NSn <+n N> "N(5

FW +K 9R (6-6)n n n n

The matrix Vn is obtained using Eqs. (6-3) and (3-2) as

Vn <e n p T>

= <(Fn Xn + Ks W n Nn + Ks S Tx ) PT>

= Fn<(4n en+q2 +U ) T> (6-7)

Fn n<en- i T;> + Fn <i T P >

= Fn n Vn- i F nf(2S

B- 12
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The matrix Ln is computed using Eqs. (6-3) and (3-7) as

L nE <en T >

= (fn Xn + Kn Wn Nn + Kn in () T->
(6-8)

= FYn+<X n T> +K n T

n n n n

B. 7 Block 7- Filter Performance

The filter performance may be verified by computing the cost

function given as Eq. (4-1) evaluated at = Xn and also at X n The

equations are

=n ( n - A(Xn))T A ( n n 1(R)) (7-1)

and
n Or T  ()-)nTn )

n n nn)n An(In 1(n)) Z In(X))T Jn(xRn Xn) I
(7-2)

+ n n n n

It is necessary to verify that

x _<X (7-3)
n n

in order to justify processing the measurements. In the event that this con-

dition is not satisfied, the basic real-world dynamics and measurement

models should be checked. The computer program should come to a halt

whenever Eq. (7-3) is not satisifed.

B-13
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